国际上应用比较广泛的OWTS振荡波电缆局部放电检测和定位技术,并通过该俱乐部与许多年轻的生物学天才走到了一起

发布时间:15-03-18 16:25分类:技术文章 标签:微生物测定
微生物生长情况可以通过测定单位时间里微生物数量或生物量(biomass)的变化来评价。通过微生物生长的测定可以客观地评价培养条件、营养物质等对微生物生长的影响,或评价不同的抗菌物质对微生物产生抑制(或杀死)作用的效果,或客观地反映微生物生长的规律。因此微生物生长的测量在理论上和实践上有着重要的意义。微生物生长的测定有计数、重量和生理指标等方法。
1、计数法此法通常用来测定样品中所含细菌、孢子、酵母菌等单细胞微生物的数量。计数法又分为直接计数和间接计数两类。
直接计数这类方法是利用特定的细菌计数板或血细胞计数板,在显微镜下计算一定容积里样品中微生物的数量。此法的缺点不能区分死菌与活菌。计数板是一块特制的载玻片,上面有一个特定的面积lmm2和高0.1mm的计数室,在1mm2的面积里又被刻划成25个(或16个)中格,每个中格进一步划分成16个(或25个)小格,但计数室都是由400个小格组成。
将稀释的样品滴在计数板上,盖上盖玻片,然后在显微镜下计算4-5个中格的细菌数,并求出每个小格所含细菌的平均数,再按下面公式求出每毫升样品所含的细菌数。
每毫升原液所含细菌数=每小格平均细菌数×400×l000×稀释倍数 间接计数法
又称活菌计数法,其原理是每个活细菌在适宜的培养基和良好的生长条件下可以通过生长形成菌落。将待测样品经一系列10倍稀释,然后选择三个稀释度的菌液,分别取0.2ml无菌平皿,再倒入适量的已熔化并冷至45℃左右的培养基,与菌液混匀、冷却、待凝固后,放人适宜温度的培养箱或温室培养,长出菌落后,计数,按下面公式计算出原菌液的含菌数:
每毫升原菌液活菌数=同一稀释度三个以上重复平皿菌落平均数×稀释倍数×5
此法可因操作不熟练造成污染,或因培养基温度过高损伤细胞等原因造成结果不稳定。尽管如此,由于该方法能测出样品中微量的菌数,仍是教学、科研和生产上常用的一种测定细菌数的有效方法。土壤、水、牛奶、食品和其他材料中所含细菌、酵母、芽孢与孢子等的数量均可用此法测定。但不适于测定样品中丝状体微生物,例如放线菌或丝状真菌或丝状蓝细菌等的营养体等。
除上述两种常用的计数方法外,还有膜过滤法、比浊法。膜过滤法是当样品中菌数很低时,可以将一定体积的潮水、海水或饮用水等样品通过膜过滤器。然后将滤膜干燥、染色,并经处理使膜透明,再在显微镜下计算膜上(或一定面积中)的细菌数;比浊法原理是在一定范围内,菌的悬液中细胞浓度与混浊度成正比,即与光密度成正比,菌越多,光密度越大。因此可以借助于分光光度计,在一定波长下,测定菌悬液的光密度,以光密度(optical
density,即O..D.)表示菌量。实验测量时一定要控制在菌浓度与光密度成正比的线性范围内,否则不准确。微生物计数法,发展迅速,现有多种多样的快速、简易、自动化的仪器和装置等方法。
2、重量法
此法的原理是根据每个细胞有一定的重量而设计的。它可以用于单细胞、多细胞以及丝状体微生物生长的测定。将一定体积的样品通过离心或过滤将菌体分离出来,经洗涤,再离心后直接称重,求出湿重,如果是丝状体微生物,过滤后用滤纸吸去菌丝之间的自由水,再称重求出湿重。不论是细菌样品还是丝状菌样品,可以将它们放在已知重量的平皿或烧杯内,于105℃烘干至恒重,取出放人干燥器内冷却,再称量,求出微生物干重。
如果要测定固体培养基上生长的放线菌或丝状真菌,可*加热至50℃,使琼脂熔化,过滤得菌丝体,再用50℃的生理盐水洗涤菌丝,然后按上述方法求出菌丝体的湿重或干重。
除了干重、湿重反映细胞物质重量外,还可以通过测定细胞中蛋白质或DNA的含量反映细胞物质的量。蛋白质是细胞的主要成分,含量也比较稳定,其中氮是蛋白质的重要组成元素。从一定体积的样品中分离出细胞,洗涤后,按凯氏定氮法测出总氮量。蛋白质含氮量为16%,细菌中蛋白质含量占细菌因形物的50%一80%,一般以65%为代表,有些细菌则只占13%一14%,这种变化是由菌龄和培养条件不同所产生的。因此总含氮量与蛋白质总量之间的关系可按下列公式计算:
蛋白质总量=含氮量×6.25
细胞总量=蛋白质总量÷(50%~80%(或65%))≈蛋白质总量×1.54
核酸DNA是微生物的重要遗传物质,每个细菌的DNA含量相当恒定,平均为8.4×10-5ng.因此从一定体积的细菌悬液中所含的细菌中提取DNA,求得DNA含量,再计算出这一定体积的细菌悬液所含的细菌总数。
3、生理指标法
对于一些非真溶液的样品,要测定微生物数量除了用活菌计数法外,还可以用生理指标测定法进行测定。生理指标包括微生物的呼吸强度、耗氧量、酶活性、生物热等。这是根据微生物在生长过程中伴随出现的这些指标,样品中微生物数量多或生长旺盛,这些指标愈明显,因此可以借助特定的仪器如瓦勃氏呼吸仪、微量量热计等设备来测定相应的指标。这类测定方法主要用于科学研究,分析微生物生理活性等。

发布时间:15-04-22 16:17分类:技术文章 标签:放射线 放射线的力量
孩子为什么长相酷似父母?某些家族为什么连续几代被某种神秘的疾病所困扰?这些遗传现象总是令人感到惊奇或迷惑,长久以来人们也为解开这些谜题做出了不懈努力。从孟德尔开始,研究遗传这门学问的工作总算开始走上正轨,而“现代遗传学之父”摩尔根更是凭借基因的连锁和互换定律摘得1933年的诺贝尔医学奖。与孟德尔的豌豆不同,摩尔根选择了更适于观察和研究的实验动物——果蝇。
关于摩尔根豢养果蝇的“蝇室”以及发生在蝇室内的各种各样令人津津乐道的事件我们之前已经有所了解了。*之所以还要再次提起,是因为本次出场的主人公也曾在蝇室工作,而其学术成*也同样建立在对果蝇的研究之上。这位主人公的名字叫做赫尔曼·穆勒(Hermann
J. Muller)。 【大学时期的赫尔曼·穆勒】
1890年12月21日,穆勒出生于纽约。1907年,穆勒进入美国*的学府——哥伦比亚大学*读,并从此迷上了生物学。1910年穆勒取得学士学位。在校期间,穆勒建立了一个生物学俱乐部,并通过该俱乐部与许多年轻的生物学天才走到了一起。这些天才的其中两位*是大名鼎鼎的“蝇室”的核心人物布里奇斯和斯特迪文特(两人的事迹参见医学诺贝尔之路1933:蝇室传奇),彼时二人都还在摩尔根的实验室刷试管。
摩尔根关于果蝇的实验非常具有吸引力。穆勒结识蝇室二人组的时候已经毕业,在康奈尔大学从事其他研究,但受到蝇室感召的穆勒仍同时与哥伦比亚大学保持联系,并非正式地参与摩尔根小组的工作。1912年,穆勒终于如愿以偿地正式加入了蝇室,投身于脏兮兮却又前途无限的实验之中。
不过穆勒在蝇室的日子过得却并不舒心。他不拥有布里奇斯那种惊人的视觉辨别力,又不像斯特迪文特那样有出众的才华。在蝇室,穆勒的工作偏重于理论,主要集中于对实验结果的阐释以及对未来实验的预测上。而在蝇室重视实验的学术空气中,穆勒的工作显得不那么受人重视。1914年,穆勒离开了蝇室,另觅他处继续自己的研究。在上世纪初,达尔文的理论已经使得人们相信生物的遗传总不会是一成不变的,否则进化将无法进行。少数情况下,生物旳性状会忽然展示出某些新的特征。1886年,荷兰植物学家Hugo
de
Vries首次注意到野生月见草的这种改变,并将这种变化描述为“突变”(mutation)。突变使得特定生物具备了潜在多样性,以便更好地适应自然。随着染色体和基因的发现,人们一直试图从遗传物质改变的角度来解释突变,穆勒抓住了这个研究方向。1918年,穆勒提出了一个基于同源染色体交叉的突变假说,即:基因的突变是逐渐积累的,隐性突变并不会立即显现。当同源染色体发生交叉,遗传物质发生互换(基因重组)时,这些突变的结果才有机会以突然出现的形式表现出来。如此,穆勒的研究重心开始转向致死性突变的发生率以及影响因素上来。
穆勒*摸索了温度的作用,发现温度与基因突变率之间存在联系。当然,包括x射线,化学物质等因素也被用来检查是否与果蝇基因突变之间存在关联,只是当时并未作为首要的影响因素来研究。在蝇室,摩尔根和他的助手们为了得到新的遗传性状已经几乎无所不用其极,而究竟哪种刑罚能够帮助果蝇产生可遗传的变异却无人能说得清。蝇室众人所不够重视的领域,恰恰是穆勒这个前蝇室成员孜孜以求的目标。
1926年,穆勒终于收获了振奋人心的实验结果。数据显示,在使用不同剂量的x射线照射果蝇后,随着x线照射剂量的加大,果蝇基因突变的频率有了相应的提高。有人将此事形象地比喻为:在x光照射下,生物体内*像被埋进了无数极小的高爆手榴弹,这些手榴弹四处爆炸,要么将细胞结构撕成碎片,要么将其重新打乱重排。如果有手榴弹在基因附近爆炸,那么基因的结构和功能也将被改变,直至引起生物体自身性状的突变。
【五十六岁时的赫尔曼·穆勒】
这是一个极其重要的发现。在过去,基因突变大多只能寄希望于自然界缓慢而低效的影响。穆勒的成果标志着人类将借助射线的力量简单地影响和改变基因,从而窥探上帝的意志,这在生物学和遗传学研究上有着非同寻常的意义。射线的力量不仅仅局限于果蝇,很快人们*发现这种力量是普适的,从简单的病毒到高级的植物和哺乳动物莫不如是。研究射线生物学影响的工作、研究基因突变过程的工作、研究基因复制过程的工作等直接导致了新的科学分支的产生。为此,诺贝尔奖评审委员会将1946年的诺贝尔医学奖授予了穆勒。
而放射线的力量也终于引起了人们的普遍关注,尤其是在原子弹爆炸之后。事实上,穆勒曾担任过曼哈顿计划的顾问,但是他本人并不知道这个计划是做什么的。核辐射造成的伤害和悲剧越来越引起公众的担忧,作为辐射危害领域的*行者,穆勒积极投身于反核战争威胁的政治活动中。1955年,穆勒参与签署了《罗素-爱因斯坦宣言》,该宣言由11位享誉的杰出科学家联名签署,并于后来间接推动了控制核武器工作的开展。

发布时间:15-03-25 16:21分类:技术文章 标签:电缆振荡波,局部放电
随着城市电网电缆化率的程度不断提高,社会发展和进步对供电可靠性的要求也不断提高,如何准确掌握配电电缆的健康状态,制定正确的检修对策,避免因电缆本身质量问题导致的突发性事故的发生,变得尤为重要。研究发现,电缆的局部放电量与其绝缘状况密切相关,局部放电量的变化预示着电缆绝缘可能存在危害电缆安全运行的缺陷。目前,国际上应用比较广泛的OWTS振荡波电缆局部放电检测和定位技术,能够有效检测和定位10kV配电电缆局部放电的位置且检测本身不对电缆造成伤害。本文主要从该系统的电源技术、抗干扰技术、定位技术、典型案例等方面进行介绍,为该技术的进一步推广应用、改进创新提供技术参考。
1、前言
近十年来,挤塑型电力电缆特别是XLPE电力电缆由于其绝缘性能好、易于制造、安装方便、供电安全可靠、有利于城市和厂矿布局等优点,在城市电网中得到广泛使用。但是这种电缆的绝缘结构中往往会由于加工技术上的难度或原材料不纯而存在气隙和有害性杂质,或者由于工艺原因在绝缘介质与半导电屏蔽层之间存在间隙或半导电体向绝缘层突出,在这些气隙和杂质*处极易产生局部放电,同时在电力电缆的安装和运行过程当中也可能会产生各种绝缘缺陷导致局部放电。由于XLPE等挤塑型绝缘材料耐放电性较差,在局部放电的长期作用下,绝缘材料不断老化*终导致绝缘击穿,造成重大事故。
北京市电力公司相关统计资料表明,电缆老化、附件质量和工艺不良在10kV电缆故障中占有较大比重。随着电缆运行时间的不断增长,潜伏的局部缺陷对城市电网可靠性的危害将会越来越突出,对供电质量和公司形象造成的危害也会越来越大。因此,引进*进技术及时检测出电缆潜伏性缺陷的要求也越来越迫切。
2、OWTS振荡波电源技术
电力电缆由于其电容量大,很难在现场进行工频电压下的局部放电检测。过去充油电缆采用直流试验,可以大大降低电源的要求。但对XLPE电力电缆,由于其绝缘电阻较高,且交流和直流下电压分布差别较大,直流耐压试验后,在XLPE电缆中,特别是电缆缺陷处会残留大量空间电荷,电缆投运后,这些空间电荷常造成电缆的绝缘击穿事故。采用超低频(0.1Hz)电源进行试验,要求试验时间长,电缆绝缘损伤较大,可引发电缆中新的缺陷。振荡波电压是近年来国内外研究较多的一种用于XLPE电力电缆局部放电检测和定位的电源。该电源与交流电源等效性好,作用时间短、操作方便、易于携带,可有效检测XLPE电力电缆中的各种缺陷,且试验不会对电缆造成伤害。OWTS振荡波电缆局部放电检测和定位装置如图1所示。检测时可以灵活施加0-28kV的直流电压,合上半导体开关后,被试电缆与电感产生阻尼振荡。该装置可以检测的电力电缆电容范围为0.05uF-2uF。
3、抗干扰技术
由于电缆的电容量大(近uF级),局部放电要求严(几pC),而电力电缆局部放电测量中不可避免的存在着环境噪声和外部干扰,局部放电信号往往湮没于这些噪声和干扰中,使测量变得非常困难,抗干扰手段的提高显得尤为重要。这些干扰按其时域和频域特征的不同,可分为窄带干扰、脉冲型干扰和背景噪声三类。由于干扰强弱、频域特性的不同,抗干扰技术要有一定的针对性。
(1)对于窄带干扰,由于其频域特征与局部放电信号的频域特征有较大差异,而且频带十分窄,故大多采用频域滤波的方法进行抑制。
(2)对于脉冲型干扰,由于它和局部放电信号非常相似,从单个波形上很难将它们区分开来。目前主要采取时延鉴别法进行鉴别。时延鉴别法是利用外来干扰脉冲及发射波到达测量点的时间差与内部放电及反射波到达测量点的时间差的不同进行鉴别。
(3)对于背景噪声,由于其在时域中表现为无规律的随机脉动,在频域中则表现为在整个频带上均匀分布,因而单从频域或时域都不能有效地抑制。在小波去噪算法提出之前,往往采用时域平均的方法来抑制这种随机性的背景噪声,但效果并不理想。小波去噪算法的出现可以比较有效地解决这个问题。
OWTS振荡波电缆局部放电检测和定位装置具有带通滤波、小波分析、时延分析等抗干扰功能,可根据信号特点,方便的进行放电脉冲的取舍,如图2所示。该装置还可以生成清晰的局部放电图形(如电压波形与局部放电信号关系图、三维谱图等),以便确定局部放电的类型,如图3所示。
4、定位技术
对于电力电缆局部放电的定位,早期*有对电缆实行扫描式检测查找局部放电点的技术,现在实际中采用的是70年代发展起来利用局部放电脉冲在电缆上的传播特性,用10MHz以上的高频扫描示波器进行定位测量的方法,该法也叫行波法或TDR法,其原理如图4所示。
其中,Ck为高压电容,Zk为检测阻抗,同时也做匹配阻抗,消除脉冲在高压端的反射。设在t0时,在电缆x处发生放电,送出的两个脉冲按相反方向沿电缆传播,t1时刻*个脉冲到达测试仪,第二个脉冲在电缆远端反射后在t2时刻到达测试仪(如图4)。由于电缆中电脉冲的传播速度相对于确定的电缆绝缘型式是已知的常数,所以根据式(1)*可以算出放电点离电缆近端(高压端)的距离x。
其中L为电缆长度,V为脉冲波在电缆中的速度,τ为两个脉冲的时延。OWTS振荡波电缆局部放电检测和定位装置采用该原理对电力电缆局部放电进行定位,如图5所示。

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章